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Abstract. In this work we generalize the classical framework of Mueller (or amplitude) scattering matrices for the Bessel 
beams (BBs). For that we extend the rotation relations of BBs (considering ‘vortex’ additional phase factor) for an arbitrary 
angle, which are useful for solving the scattering problem in a rotated coordinate system. Thus, we rework the existing 
classification of the BBs and their polarizations with the focus on rotation relations between them. We have already 
implemented all BB types with arbitrary polarizations/rotations in a separate branch of ADDA, and are working on testing 
the code. As a result, it should be trivial for anyone to simulate the scattering of Bessel beams by arbitrary inhomogeneous 
particles, including randomly orientated ones. 

INTRODUCTION 

In recent years the Bessel beams (BBs) are gaining popularity [1]. The area of Bessel beam applications contains 
optical levitation and manipulation, laser materials processing, non-linear optics, optical acceleration, optical guiding 
and alignment, microscopic imaging, and so on [2–8]. They belong to the class of non-diffraction beams, which do 
not spread out during propagation (like an unbounded plane wave). While the scattering of these beams by particles 
of simple shapes, such as spheres, has been considered in the literature [9], it is rarely done for complex particles. 

The discrete dipole approximation (DDA) is a popular method to simulate scattering and absorption of 
electromagnetic waves by particles of arbitrary shape and internal structure [10]. In principle, the DDA and the 
corresponding computer codes are applicable to arbitrary incident fields. However, the practical simulations for any 
beam types are much more accessible to the practitioners if these beams are built into the code. Thus, the final goal of 
this work is the implementation of BBs in the open-source ADDA code [11]. 

KNOWN BESSEL-BEAM TYPES 

It is convenient to use Hertz vector potentials મୣ and મ୫ to describe BB types [12]. The electric and magnetic 
fields are then expressed as: ۳ = ∇ × ∇ × મୣ − ∇ × ߲મ୫ ⁄ݐ߲ , (1) ۶ = ∇ × ∇ × મ୫ − ∇ × ߲મୣ ⁄ݐ߲ . (2) 
Note that these vector potentials are not unique for given fields. For BBs the amplitudes of both મୣ and મ୫ take the 
following form in the cylindrical coordinate system Π ≝  ୧ఝ݁ି୧௭, (3)݁(ߩ୲݇)ܬ
where ܬ is the Bessel function of the first kind (݊ is the order of BB), ݇୲ ≝ ݇ sinߙ and ݇௭ ≝ ݇ cosߙ are the 
transverse and longitudinal components of the wave vector ݇, respectively, and ߙ is the half cone angle (Fig. 1). 
Varying the direction of the Hertz vector potentials, we obtain different types of BBs. 
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FIGURE 1 Geometry of BB generation using an axicon (conical lens) [12]. 

 
TE and TM (transverse electric and magnetic) BBs are obtained from મ୫ = Π܍௭ , મୣ = 0 and મୣ = Π܍௭ , મ୫ =0, respectively. where ܍௭ is the unit vector along the propagation direction. We denote the corresponding fields ۳ 

and ۶, respectively; they have zero ݖ-components. The accompanying fields ۶ and ۳ have no zero 
components. These BB types are very convenient in reflection and transmission problems [13]. Also, TE and TM BBs 
of zero order are connected to the azimuthal and radial BB polarizations [14]. 

BB with linearly polarized electric and magnetic fields (LE and LM, respectively) are obtained from મ୫ = Π܍୲, મୣ = 0 and મୣ = Π܍୲, મ୫ = 0, respectively. Here ܍୲ is a polarization vector perpendicular to ܍௭; ܍୲ directed along ݕ 
or ݔ axes leads to so-called ݔ- or ݕ-linear polarizations of the corresponding fields: ۳୫(௫), ۳୫(௬) and ۶(ୣ௫), ۶(ୣ௬) for LE 
and LM fields, respectively (here subscripts m and e correspond to beam type) [14]. More specifically, these fields 
still have longitudinal components, i.e. the electric (for LE type) or magnetic (for LM type) field has zero component 
only along ܍୲. The accompanying magnetic ۶୫(௫), ۶୫(௬) and electric fields ۳(ୣ௫), ۳(ୣ௬), have no zero components at all. 

Circularly symmetric (CS) BB types are defined by મ୫ = Π܍௬ 2⁄ ,મୣ = −Π܍௫ 2⁄  and મ୫ = −Π܍௫ 2,⁄  મୣ =−Π܍௬ 2⁄  leading to two BB polarizations ۳ୡୱ(ଵ,) and ۳ୡୱ(,ଵ)(subscript CS is usually omitted in the literature) with 
circularly symmetric time-averaged Pointing vector. This BB type can also be produced using angular spectrum 
representation (ASR) [12]. One can also generalize these definitions to ۳ୌ(ఈ,ఉ)  ≝ ۳ୌ(ଵ,) ߙ + ۳ୌ(,ଵ), (4) ۳୫,ୣ(ఈ,ఉ) ߚ  ≝ ۳୫,ୣ(௫) ߙ + ۳୫,ୣ(௬) ߚ ଶ|ߙ| (5) , + ଶ|ߚ| = 1. (6) 

In particular, ۳୫,ୣ(ଵ,±୧) can be considered as generalizations of circularly-polarized plane waves, while both real  ߙ 
and ߚ are similarly correspond rotated linear polarizations of a plane wave. 

BESSEL BEAMS IN SCATTERING PROBLEMS 

Additional complication arises from the fact that most light-scattering codes (including ADDA) are tailored for 
the calculation of the Mueller (or amplitude) scattering matrices, which requires simulations for two polarizations 
(commonly linear) of the incident field. Thus, we extended this approach to BBs, defining two basis polarizations for 
each BB type. It is natural to require these polarizations to be connected by ߨ 2⁄  rotation ۳∥ ∝ ℛగ ଶ⁄ (ܚ)۳ୄ = గ܀ ଶ⁄ గି܀)۳ୄ ଶ⁄  (7) ,(ܚ
where ℛఞ is the rotation operator (acting on a field) and ܀ఞ is a 3×3 rotation matrix (acting on a vector), both over 
angle ߯ around the beam propagation axis (positive value – in counterclockwise direction). Parallel and perpendicular 
polarizations are considered with respect to the scattering plane, as typically used for scattering matrices [15]. For a 
plane wave the rotation transformation of ܚ in Eq. (7) is redundant, and the proportionality can be replaced by equality. 
By contrast, BB is generally a vortex beam (i.e. its phase depends on azimuthal angle ߮) leading to the additional 
phase factor discussed below. 
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Redefined Bessel-beam polarizations 

We already have two polarizations for each of LE, LM, and CS BBs: ۳୫(௫), ۳୫(௬); ۳(ୣ௫), ۳(ୣ௬); and ۳ୡୱ(ଵ,), ۳ୡୱ(,ଵ), 
respectively. Here and further we discuss only the electric fields, since they are sufficient for light-scattering 
simulations of non-magnetic materials. The relations for magnetic fields can be obtained analogously, if needed. The 
only missing component is the polarizations for TE and TM types, since these types are almost axisymmetric, leading 
to trivial transformations under rotations: ℛఞ۳,, = ݁ି୧ఞ۳,,, (8) 
where we explicitly specify the order of BB as a subscript to avoid confusion. 

Therefore, we introduce ۳,ିଵ(௫) , ۳,ିଵ(௬) , ۳,ିଵ(௫) , ۳,ିଵ(௬)  determined by the following equations: ۳,, = ۳,,ିଵ(௫) + i ۳,,ିଵ(௬) , (9) ℛగ ଶ⁄ ۳,,(௫) = ݁ି୧గ ଶ⁄ ۳,,(௬) , (10) 
and have the following explicit expressions: ۳,(௫,௬) = − cscߙ ቀ۳ୣ,(௫,௬) − i cosߙ  ۳୫,(௫,௬)ቁ, ( 1 1 ) ۳,(௫,௬) = − cscߙ ቀ۳୫,(௫,௬) + i cosߙ  ۳ୣ,(௫,௬)ቁ. (12) 
Thus, similarly to Eqs. (4)–(6) we can determine general polarizations (ߚ,ߙ) for TE and TM BB types. 

Rotation relations 

Many light-scattering codes (including ADDA) allow one to rotate the particle and/or the incident beam by 
arbitrary angles. The corresponding rotation relations are well-known for plane waves [16], but need to be re-derived 
for the BBs. The ingenuity of the above definition of BB polarizations implies universal rotation transformation over 
the beam axis ℛఞ۳(ఈ,ఉ) = ݁ି୧ఞቀcos߯ ۳(ఈ,ఉ) + sin߯  ۳(ିఉ,ఈ)ቁ, (13) 

for arbitrary (ߚ,ߙ) and each BB type (subscripts m, e, CS, TE, TM). Note that by definition ۳(ିଵ,) = −۳(ଵ,). 
Moreover, Eq. (13) implies Eq. (10) and trivial relations ℛగ۳(ఈ,ఉ) = (−1)ାଵ۳(ఈ,ఉ),   ℛଶగ۳(ఈ,ఉ) = ۳(ఈ,ఉ), (14) 

which are also satisfied by ۳, and ۳, (without superscripts), as follows from Eq. (8). 

Scattering matrices 

Overall, Eq. (13) is the most straightforward generalization of rotation relations for plane waves (corresponding to ݊ = 0), since the dependence on ݊ is localized into a common phase factor. For any scattering plane there exist real ߙ and ߚ such that for a plane wave ۳ୄ = ۳(ఈ,ఉ), ۳∥ = ۳(ିఉ,ఈ) (e.g., ߙ = ߚ ,1 = 0 for ݖݕ scattering plane and default 
propagation direction along the ݖ-axis). And we postulate the same definitions for each of the five BB types, i.e. ߙ 
and ߚ are determined by the scattering plane the same way as for plane waves. This leads to the definition of the 
amplitude scattering matrix for BBs, i.e. it is a matrix with columns, describing the scattered field due to incident ۳||(ܚ) and ۳ୄ(ܚ), respectively (Eq. (3.12) of [15]). Two values in each column correspond to the projections of the 
scattered field parallel and perpendicular to the scattering plane, respectively, but for this part the specifics of the 
incident wave are completely irrelevant. 

Next, we define the Mueller matrix for BBs using the standard transformation from the amplitude one (Eq. (3.16) 
of [15]). As usually, it relates the Stokes vectors of the incident and scattered fields, but the Stokes vector of the 
incident BBs does not have a clear physical meaning. Still we postulate this vector by standard expressions (Eq. (2.84) 
of [15]), using the expansion coefficient of the incident field into ۳||(ܚ) and ۳ୄ(ܚ). Importantly, any linear 
combination of the above components, e.g., ۳(ఈ,ఉ), can be represented through this Stokes vector. 
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Therefore, once the light-scattering problem is solved for two polarizations of the specific BB, the solution for any 
their combination, i.e. ۳(ఈ,ఉ) of the same BB type, can be obtained for free. The corresponding scattered fields and 
Stokes vectors can be, most directly, obtained through the generalized amplitude and Mueller matrices, respectively. 

The immediate benefit of this linearity is related to the simulation of scattering for randomly oriented particles. 
Generally, in the DDA (or similar methods) the particle orientation need to be sampled over three Euler angles [17], 
and the scattering problem need to be solved for each orientation independently. For plane waves (that are naturally 
axisymmetric) – the well-known trick is to replace the rotation over the first Euler angle by the rotation of the scattering 
plane (i.e. varying azimuthal scattering angle) [11]. The corresponding values are each obtained from a simulation for 
single particle orientation. 

The above analysis shows that the same optimization remains valid for BBs, since the scattered field in a rotated 
scattering plane can be obtained from Eq. (13) (assuming that the rotation center lies on the beam axis). Moreover, 
the resulting expressions for scattered Stokes vector (to be averaged over particle orientations) are exactly the same 
as that for the plane wave, since the factor ݁ି୧ఞ cancels out. 

NUMERICAL SIMULATIONS 

We have already implemented all BBs with arbitrary polarizations/rotations in a separate branch of ADDA – 
https://github.com/stefanyagl/adda, and are working on testing the code. First simulation results are shown in Fig. 2. 
The scattering intensity in H-plane (ݖݕ-plane) expressed through Mueller matrix elements ୄܫ = ଵܵଵ − ଵܵଶ, (15) 
is plotted in comparison with the results of [18]. Further numerical results and comparison with reference methods 
will be presented at the conference. 
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FIGURE  2 The comparison of the scattering intensities ୄܫ  in ݖݕ-plane obtained with the DDA (our results) and SIEM [18] for 

scattering of zero-order CS BB with ߙ = 15° and λ = 0.6328 μm by a coated sphere (inner core with ݉ = 1.55 and radius 0.5ߣ, outer shell with ݉ = 1.33 and radius ߣ), centered on a beam axis. In the DDA we used 64 dipoles per ߣ. 

CONCLUSION 

We have extended the definitions of polarizations of various BB types to be consistent with the classical framework 
of amplitude and Mueller scattering matrices, commonly employed for plane waves. Apart from conceptual simplicity, 
this allows one to keep optimizations of orientation averaging, developed for plane waves. The implementation of 
BBs in the open-source code ADDA allows anyone to easily simulate the scattering of BBs by arbitrary 
inhomogeneous particles. 
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